Resilience analysis of power grids under the sequential attack
Document Type
Article
Date of Original Version
12-1-2014
Abstract
The modern society increasingly relies on electrical service, which also brings risks of catastrophic consequences, e.g., large-scale blackouts. In the current literature, researchers reveal the vulnerability of power grids under the assumption that substations/transmission lines are removed or attacked synchronously. In reality, however, it is highly possible that such removals can be conducted sequentially. Motivated by this idea, we discover a new attack scenario, called the sequential attack, which assumes that substations/transmission lines can be removed sequentially, not synchronously. In particular, we find that the sequential attack can discover many combinations of substation whose failures can cause large blackout size. Previously, these combinations are ignored by the synchronous attack. In addition, we propose a new metric, called the sequential attack graph (SAG), and a practical attack strategy based on SAG. In simulations, we adopt three test benchmarks and five comparison schemes. Referring to simulation results and complexity analysis, we find that the proposed scheme has strong performance and low complexity.
Publication Title, e.g., Journal
IEEE Transactions on Information Forensics and Security
Volume
9
Issue
12
Citation/Publisher Attribution
Zhu, Yihai, Jun Yan, Yufei Tang, Yan Sun, and Haibo He. "Resilience analysis of power grids under the sequential attack." IEEE Transactions on Information Forensics and Security 9, 12 (2014): 2340-2354. doi: 10.1109/TIFS.2014.2363786.