Document Type
Article
Date of Original Version
5-2017
Abstract
This manuscript reports a FPGA-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design based on an all-digital phase-locked loop (ADPLL). A distributed feedback (DFB) laser with modulated injection current was used as a swept-frequency laser source. An open loop pre-distortion modulation waveform was calibrated using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then implemented using a field programmed gate array (FPGA) to lock the output of a Mach–Zehnder interferometer that was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency domain reflectometry (OFDR) system was used to interrogate a sub-terahertz range fiber structure (sub-THz-FS) array. A static strain test was then conducted and linear sensor results were observed.
Citation/Publisher Attribution
Zhen Chen, Gerald Hefferman, Tao Wei, “Field-programmable gate array-controlled sweep velocity-locked laser pulse generator,” Opt. Eng. 56(5), 054102 (2017), doi: 10.1117/1.OE.56.5.054102.
Available at: http://dx.doi.org/10.1117/1.OE.56.5.054102
Author Manuscript
This is a pre-publication author manuscript of the final, published article.
Terms of Use
This article is made available under the terms and conditions applicable
towards Open Access Policy Articles, as set forth in our Terms of Use.