"Dynamic Energy Management of a Microgrid Using Approximate Dynamic Pro" by Peng Zeng, Hepeng Li et al.
 

Dynamic Energy Management of a Microgrid Using Approximate Dynamic Programming and Deep Recurrent Neural Network Learning

Document Type

Article

Date of Original Version

7-1-2019

Abstract

This paper focuses on economical operation of a microgrid (MG) in real-time. A novel dynamic energy management system is developed to incorporate efficient management of energy storage system into MG real-time dispatch while considering power flow constraints and uncertainties in load, renewable generation and real-time electricity price. The developed dynamic energy management mechanism does not require long-term forecast and optimization or distribution knowledge of the uncertainty, but can still optimize the long-term operational costs of MGs. First, the real-time scheduling problem is modeled as a finite-horizon Markov decision process over a day. Then, approximate dynamic programming and deep recurrent neural network learning are employed to derive a near optimal real-time scheduling policy. Last, using real power grid data from California independent system operator, a detailed simulation study is carried out to validate the effectiveness of the proposed method.

Publication Title, e.g., Journal

IEEE Transactions on Smart Grid

Volume

10

Issue

4

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 204
  • Usage
    • Abstract Views: 12
  • Captures
    • Readers: 193
see details

Share

COinS