Invariant Adaptive Dynamic Programming for Discrete-Time Optimal Control

Document Type

Article

Date of Original Version

11-1-2020

Abstract

For systems that can only be locally stabilized, control laws and their effective regions are both important. In this paper, invariant policy iteration is proposed to solve the optimal control of discrete-time systems. At each iteration, a given policy is evaluated in its invariantly admissible region, and a new policy and a new region are updated for the next iteration. Theoretical analysis shows the method is regionally convergent to the optimal value and the optimal policy. Combined with sum-of-squares polynomials, the method is able to achieve the near-optimal control of a class of discrete-time systems. An invariant adaptive dynamic programming algorithm is developed to extend the method to scenarios where system dynamics is not available. Online data are utilized to learn the near-optimal policy and the invariantly admissible region. Simulated experiments verify the effectiveness of our method.

Publication Title, e.g., Journal

IEEE Transactions on Systems, Man, and Cybernetics: Systems

Volume

50

Issue

11

Share

COinS