Analytic assessment of Laplacian estimates via novel variable interring distances concentric ring electrodes

Document Type

Conference Proceeding

Date of Original Version

10-13-2016

Abstract

Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation has been demonstrated in a range of applications. In our recent work we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are analytically compared to their constant inter-ring distances counterparts using coefficients of the Taylor series truncation terms. Obtained results suggest that increasing inter-ring distances electrode configurations may decrease the truncation error of the Laplacian estimation resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration the truncation error may be decreased more than two-fold while for the quadripolar more than seven-fold decrease is expected.

Publication Title, e.g., Journal

Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS

Volume

2016-October

Share

COinS