Document Type

Article

Date of Original Version

2012

Department

Electrical, Computer and Biomedical Engineering

Abstract

This paper presents the design and implementation of a low power embedded system using mobile processor technology (Intel Atom™ Z530 Processor) specifically tailored for a neural-machine interface (NMI) for artificial limbs. This embedded system effectively performs our previously developed NMI algorithm based on neuromuscular-mechanical fusion and phase-dependent pattern classification. The analysis shows that NMI embedded system can meet real-time constraints with high accuracies for recognizing the user's locomotion mode. Our implementation utilizes the mobile processor efficiently to allow a power consumption of 2.2 watts and low CPU utilization (less than 4.3%) while executing the complex NMI algorithm. Our experiments have shown that the highly optimized C program implementation on the embedded system has superb advantages over existing PC implementations on MATLAB. The study results suggest that mobile-CPU-based embedded system is promising for implementing advanced control for powered lower limb prostheses.

Publication Title, e.g., Journal

2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Share

COinS