Spatiotemporal modeling of dengue fever risk in Puerto Rico
Document Type
Article
Date of Original Version
11-1-2020
Abstract
Dengue Fever (DF) is a mosquito vector transmitted flavivirus and a reemerging global public health threat. Although several studies have addressed the relation between climatic and environmental factors and the epidemiology of DF, or looked at purely spatial or time series analysis, this article presents a joint spatio-temporal epidemiological analysis. Our approach accounts for both temporal and spatial autocorrelation in DF incidence and the effect of temperatures and precipitation by using a hierarchical Bayesian approach. We fitted several space-time areal models to predict relative risk at the municipality level and for each month from 1990 to 2014. Model selection was performed according to several criteria: the preferred models detected significant effects for temperature at time lags of up to four months and for precipitation up to three months. A boundary detection analysis is incorporated in the modeling approach, and it was successful in detecting municipalities with historically anomalous risk.
Publication Title, e.g., Journal
Spatial and Spatio-temporal Epidemiology
Volume
35
Citation/Publisher Attribution
Puggioni, Gavino, Jannelle Couret, Emily Serman, Ali S. Akanda, and Howard S. Ginsberg. "Spatiotemporal modeling of dengue fever risk in Puerto Rico." Spatial and Spatio-temporal Epidemiology 35, (2020). doi: 10.1016/j.sste.2020.100375.