Document Type
Article
Date of Original Version
4-28-2020
Department
Civil and Environmental Engineering
Abstract
This paper evaluates the fracture toughness of sodium aluminosilicate hydrate (N-A-S-H) gel formed through alkaline activation of fly ash via molecular dynamics (MD) simulations. The short- and medium-range order of the constructed N-A-S-H structures shows good correlation with the experimental observations, signifying the viability of the N-A-S-H structures. The simulated fracture toughness values of N-A-S-H (0.4–0.45 MPa m0.5) appear to be of the same order as the available experimental values for fly ash-based geopolymer mortars and concretes. These results suggest the efficacy of the MD simulation toward obtaining a realistic fracture toughness of N-A-S-H, which is otherwise very challenging to obtain experimentally, and no direct experimental fracture toughness values are yet available. To further assess the fracture behavior of N-A-S-H, the number of chemical bonds formed/broken during elongation and their relative sensitivity to crack growth are evaluated. Overall, the fracture toughness of N-A-S-H presented in this paper paves the way for a multiscale simulation-based design of tougher geopolymers.
Citation/Publisher Attribution
G.A. Lyngdoh, S. Nayak, R. Kumar, N.M. Anoop Krishnan, S. Das, Fracture toughness of sodium aluminosilicate hydrate (NASH) gels: Insights from molecular dynamics simulations, Journal of Applied Physics. 127 (2020) 165107. https://doi.org/10.1063/1.5144876.
Author Manuscript
This is a pre-publication author manuscript of the final, published article.
Terms of Use
This article is made available under the terms and conditions applicable
towards Open Access Policy Articles, as set forth in our Terms of Use.