Document Type
Article
Date of Original Version
9-5-2020
Department
Civil and Environmental Engineering
Abstract
This paper evaluates the strain-sensing ability of a nanoengineered hierarchical twill weave composite using multiscale numerical simulations. Piezoresistivity is incorporated in such composite by introducing carbon nanotubes (CNT) in the polystyrene (PSS) matrix so as to form a percolating microstructure. The glass fiber twill weave, which itself contains CNT-modified PSS matrix inside the yarns, is coated with thin film of such piezoresistive matrix to obtain the smart composite configuration. The methodology, presented in this paper, captures the hierarchical intricacies at multiple length scales and implements various mechanical damage mechanisms at subsequent interactive length scales as well as consequent electrical responses so as to yield macroscopic electromechanical response. The simulated responses show excellent correlation with experimental observations signifying the efficacy of the simulation methodology. Such a detailed multiscale approach can provide valuable insights towards tuning of structural hierarchies at multiple length scales for efficient design of smart woven laminated composites.
Citation/Publisher Attribution
S. Nayak, S. Das, Strain sensing efficiency of hierarchical nano-engineered smart twill-weave composites: Evaluations using multiscale numerical simulations, Composite Structures. 255 (2021) 112905. https://doi.org/10.1016/j.compstruct.2020.112905.
Author Manuscript
This is a pre-publication author manuscript of the final, published article.
Terms of Use
This article is made available under the terms and conditions applicable
towards Open Access Policy Articles, as set forth in our Terms of Use.