Document Type


Date of Original Version



Civil and Environmental Engineering


The paper evaluates the spatial damage sensing ability of self-sensing mortars containing up to 40% waste metallic iron powder by volume as cement-replacement. The spatial damage-sensing ability is evaluated using a framework that integrates the electrical resistance tomography (ERT)-based conductivity reconstruction algorithm with multiscale numerical homogenization with a view to enable microstructure-guided design of such self-sensing composites. The ERT-based framework uses experimentally measured boundary electrode voltages as input; assigns the effective conductivity of the composite (obtained from numerical homogenization) as initial estimate of the conductivity distribution and initiates the iterative process involving the well-posed forward model and the ill-posed inverse problem to obtain the conductivity map in the damaged configuration. The reconstructed damage maps, thus obtained, confirm sufficient spatial damage-sensing ability of mortars containing 30% or greater amount of iron powder validating the applicability of such self-sensing composites towards spatial damage sensing for health monitoring of structures.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.