Document Type
Article
Date of Original Version
2019
Department
Civil and Environmental Engineering
Abstract
This paper presents fracture response of alkali-activated slag (AAS) mortars with up to 30% (by volume) of slag being replaced by waste iron powder which contains a significant fraction of elongated particles. The elongated iron particles act as micro-reinforcement and improve the crack resistance of AAS mortars by increasing the area of fracture process zone (FPZ). Increased area of FPZ signifies increased energy-dissipation which is reflected in the form of significant increase in the crack growth resistance as determined from R-curves. Fracture response of notched AAS mortar beams under three-point bending is simulated using extended finite element method (XFEM) to develop a tool for direct determination of fracture characteristics such as crack extension and fracture toughness in particulate-reinforced AAS mortars. Fracture response simulated using the XFEM based framework correlates well with experimental observations. The comprehensive fracture studies reported here provide an economical and sustainable means towards improving the ductility of AAS systems which are generally more brittle than their conventional ordinary portland cement counterparts.
Citation/Publisher Attribution
Nayak, S., Kizilkanat, A. B., Neithalath, N., & Das, S. (2019). Experimental and Numerical Investigation of the Fracture Behavior of Particle Reinforced Alkali Activated Slag Mortars. Journal of Materials in Civil Engineering, 31(5), 04019043. doi: 10.1061/(ASCE)MT.1943-5533.0002673
Available at: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002673
Author Manuscript
This is a pre-publication author manuscript of the final, published article.
Terms of Use
This article is made available under the terms and conditions applicable
towards Open Access Policy Articles, as set forth in our Terms of Use.