Document Type

Article

Date of Original Version

2015

Abstract

Little is known about the extent to which interrupted time-series analysis (ITSA) can be applied to short, single-case study designs and whether those applications produce results consistent with visual analysis (VA). This paper examines the extent to which ITSA can be applied to single-case study designs and compares the results based on two methods: ITSA and VA, using papers published in the Journal of Applied Behavior Analysis in 2010. The study was made possible by the development of software called UnGraph® which facilitates the recovery of raw data from the graphs. ITSA was successfully applied to 94% of the examined graphs with the number of observations ranging from 8 to 136. Moderate to high lag 1 autocorrelations (> .50) were found for 46% of the data series. Effect sizes similar to group-level Cohen’s d were identified based on the tertile distribution. Effects ranging from 0.00 to 0.99 were classified as small, those ranging from 1.00 to 2.49 as medium, and large effect sizes were defined as 2.50 or greater. Comparison of the conclusions from VA and ITSA had a low level of agreement (Kappa = .14, accounting for the agreement expected by chance). The results demonstrate that ITSA can be broadly implemented in applied behavior analysis research. These two methods should be viewed as complimentary and used concurrently.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.