Document Type


Date of Original Version



Clostridium pasteurianum ATCC 6013 achieves high n-butanol production when glycerol is used as the sole carbon source. In this study, the homeoviscous membrane response of C. pasteurianum ATCC 6013 has been examined through n-butanol challenge experiments. Homeoviscous response is a critical aspect of n-butanol tolerance and has not been examined in detail for C. pasteurianum. Lipid membrane compositions were examined for glycerol fermentations with n-butanol production, and during cell growth in the absence of n-butanol production, using gas chromatography–mass spectrometry (GC–MS) and proton nuclear magnetic resonance (1H-NMR). Membrane stabilization due to homeoviscous response was further examined by surface pressure–area (π–A) analysis of membrane extract monolayers. C. pasteurianum was found to exert a homeoviscous response that was comprised of an increase lipid tail length and a decrease in the percentage of unsaturated fatty acids with increasing n-butanol challenge. This led to a more rigid or stable membrane that counteracted n-butanol fluidization. This is the first report on the changes in the membrane lipid composition during n-butanol production by C. pasteurianum ATCC 6013, which is a versatile microorganism that has the potential to be engineered as an industrial n-butanol producer using crude glycerol.