Document Type
Article
Date of Original Version
2014
Abstract
Clostridium pasteurianum ATCC 6013 achieves high n-butanol production when glycerol is used as the sole carbon source. In this study, the homeoviscous membrane response of C. pasteurianum ATCC 6013 has been examined through n-butanol challenge experiments. Homeoviscous response is a critical aspect of n-butanol tolerance and has not been examined in detail for C. pasteurianum. Lipid membrane compositions were examined for glycerol fermentations with n-butanol production, and during cell growth in the absence of n-butanol production, using gas chromatography–mass spectrometry (GC–MS) and proton nuclear magnetic resonance (1H-NMR). Membrane stabilization due to homeoviscous response was further examined by surface pressure–area (π–A) analysis of membrane extract monolayers. C. pasteurianum was found to exert a homeoviscous response that was comprised of an increase lipid tail length and a decrease in the percentage of unsaturated fatty acids with increasing n-butanol challenge. This led to a more rigid or stable membrane that counteracted n-butanol fluidization. This is the first report on the changes in the membrane lipid composition during n-butanol production by C. pasteurianum ATCC 6013, which is a versatile microorganism that has the potential to be engineered as an industrial n-butanol producer using crude glycerol.
Citation/Publisher Attribution
Venkataramanan, K. P., Kurniawan, Y., Boatman, J. J., Haynes, C. H., Taconi, K. A., Martin, L. M., Bothun, G. D., & Scholz, C. (2014). Homeoviscous response of Clostridium pasteurianum to butanol toxicity during glycerol fermentation. Journal of Biotechnology, 179, 8-14. doi: 10.1016/j.jbiotec.2014.03.017
Available at: https://doi.org/10.1016/j.jbiotec.2014.03.017
Author Manuscript
This is a pre-publication author manuscript of the final, published article.
Terms of Use
This article is made available under the terms and conditions applicable
towards Open Access Policy Articles, as set forth in our Terms of Use.