Document Type
Article
Date of Original Version
2024
Department
Chemistry
Abstract
Electrospray ionization (ESI) enables gentle transfer of biomolecules from solution to vacuum, facilitating the study of biomolecular structure under highly controlled conditions. However, biomolecules are desolvated during the ESI process, and the loss of ionic hydrogen bonds to solvent molecules can drive structural rearrangement, most prominently at solvent-exposed charge sites. Microsolvation reagents can bind to these bare charge sites in ESI mass spectrometry (ESI–MS) experiments, providing alternative intermolecular interaction partners. Previously, 18-crown-6 was shown to be an effective reagent for binding to cationic monoalkylammonium residues. More recently, diserinol isophthalamide (DIP) was reported as an analogous anionic microsolvation reagent, primarily for carboxylate residues of small model peptides. Herein, we expand upon this work to examine the complexation of DIP, 1,1’-(1,2-phenylene)bis(3-phenylurea) (PBP), and triclocarban (TCC) with molecules featuring a terminal or linking phosphate moiety. Specifically, using ESI–MS, we assess the binding of these reagents with dimethyl phosphate (DMP), cyclic adenosine monophosphate (cAMP), dibutyryl cAMP, RNA dinucleotides ApU and CpG, and angiotensin II phosphate (DRVpYIHPF). For DMP, the smallest target molecule, reagents TCC, PBP and DIP showed favorable adduction. However, for larger systems, PBP and TCC showed reduced complexation, which was attributed to steric hindrance from the terminal aromatic moieties of PBP and the limited hydrogen bonding network of TCC. Overall, of the three reagents, DIP showed the most consistent performance for anionic microsolvation of phosphate groups, facilitating future studies of gas-phase biomolecular structure and the effects of microsolvation.
Publication Title, e.g., Journal
International Journal of Mass Spectrometry
Citation/Publisher Attribution
Schultz, M., Ellis, N. A., Banor, N. D., & Thomas, D. A. (2024). Complexation of Diserinol Isoplthalamide with Phosphorylated Biomolecules in Electrospray Ionization Mass Spectrometry. International Journal of Mass Spectrometry. In press. https://doi.org/10.1016/j.ijms.2024.117364
Available at: https://doi.org/10.1016/j.ijms.2024.117364
Author Manuscript
This is a pre-publication author manuscript of the final, published article.
Terms of Use
This article is made available under the terms and conditions applicable
towards Open Access Policy Articles, as set forth in our Terms of Use.