Document Type
Article
Date of Original Version
11-8-2012
Department
Chemistry
Abstract
Knowledge of nanopore size and shape is critical for many implementations of these singlemolecule sensing elements. Geometry determination by fitting the electrolyte-concentrationdependence of the conductance of surface-charged, solid-state nanopores has been proposed to replace demanding electron microscope-based methods. The functional form of the conductance poses challenges for this method by restricting the number of free parameters used to characterize the nanopore. We calculated the electrolyte-dependent conductance of nanopores with an exponential-cylindrical radial profile using three free geometric parameters; this profile, itself, could not be uniquely geometry-optimized by the conductance. Several different structurally simplified models, however, generated quantitative agreement with the conductance, but with errors exceeding 40% for estimates of key geometrical parameters. A tractable conical-cylindrical model afforded a good characterization of the nanopore size and shape, with errors of less than 1% for the limiting radius. Understanding these performance limits provides a basis for using and extending analytical nanopore conductance models.
Citation/Publisher Attribution
Frament, C. M., & Dwyer, J. R. (2012). Conductance-Based Determination of Solid-State Nanopore Size and Shape: An Exploration of Performance Limits. The Journal of Physical Chemistry C, 116(44), 23315–23321. doi: 10.1021/jp305381j
Available: http://dx.doi.org/10.1021/jp305381j
Author Manuscript
This is a pre-publication author manuscript of the final, published article.
Terms of Use
All rights reserved under copyright.