Document Type
Article
Date of Original Version
2016
Department
Chemistry
Abstract
We describe a method for simply characterizing the size and shape of a nanopore during solution-based fabrication and surface modification, using only low-overhead approaches native to conventional nanopore measurements. Solution-based nanopore fabrication methods are democratizing nanopore science by supplanting the traditional use of charged-particle microscopes for fabrication, but nanopore profiling has customarily depended on microscopic examination. Our approach exploits the dependence of nanopore conductance in solution on nanopore size, shape, and surface chemistry in order to characterize nanopores. Measurements of the changing nanopore conductance during formation by etching or deposition can be analyzed using our method to characterize the nascent nanopore size and shape—beyond the typical cylindrical approximation—in real-time. Our approach thus accords with ongoing efforts to broaden the accessibility of 3 nanopore science from fabrication through use: it is compatible with conventional instrumentation and offers straightforward nanoscale characterization of the core tool of the field.
Citation/Publisher Attribution
Bandara, Y. M. Nuwan, D. Y., Karawdeniya, B. I., & Dwyer, J. R. (2016). Real-time Profiling of Solid-State Nanopores During Solution-Phase Nanofabrication. ACS Appl. Mater. Interfaces, 8 (44), 30583-30589. doi: 10.1021/acsami.6b10045
Available at: http://dx.doi.org/10.1021/acsami.6b10045
Author Manuscript
This is a pre-publication author manuscript of the final, published article.
Terms of Use
This article is made available under the terms and conditions applicable
towards Open Access Policy Articles, as set forth in our Terms of Use.