"Detection of high-valent iron species in alloyed oxidic cobaltates for" by Nancy Li, Ryan G. Hadt et al.
 

Document Type

Article

Date of Original Version

2021

Department

Chemistry

Abstract

Iron alloying of oxidic cobaltate catalysts results in catalytic activity for oxygen evolution on par with Ni-Fe oxides in base but at much higher alloying compositions. Zero-field 57Fe Mössbauer spectroscopy and X-ray absorption spectroscopy (XAS) are able to clearly identify Fe4+ in mixed-metal Co-Fe oxides. The highest Fe4+ population is obtained in the 40–60% Fe alloying range, and XAS identifies the ion residing in an octahedral oxide ligand field. The oxygen evolution reaction (OER) activity, as reflected in Tafel analysis of CoFeOx films in 1 M KOH, tracks the absolute concentration of Fe4+. The results reported herein suggest an important role for the formation of the Fe4+ redox state in activating cobaltate OER catalysts at high iron loadings.

Publication Title, e.g., Journal

Nature Communications

Volume

12

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 57
  • Usage
    • Downloads: 51
    • Abstract Views: 2
  • Captures
    • Readers: 63
see details

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.