Document Type

Article

Date of Original Version

9-16-2013

Department

Chemistry

Abstract

The performance of nanopore single-molecule sensing elements depends intimately on their physical dimensions and surface chemical properties. These factors underpin the dependence of the nanopore ionic conductance on electrolyte concentration, yet the measured, or modeled, dependence only partially illuminates the details of geometry and surface chemistry. Using the electrolyte-dependent conductance data before and after selective surface functionalization of solid-state nanopores, however, introduces more degrees of freedom and improves the performance of conductance-based nanopore characterizations. Sets of representative nanopore profiles were used to generate conductance data, and the nanopore shape and exact dimensions were identified, through conductance alone, by orders-of-magnitude 3 reductions in the geometry optimization metrics. The optimization framework could similarly be used to evaluate the nanopore surface coating thickness.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.