Chemically tailoring nanopores for single-molecule sensing and glycomics
Document Type
Article
Date of Original Version
10-1-2020
Abstract
A nanopore can be fairly—but uncharitably—described as simply a nanofluidic channel through a thin membrane. Even this simple structural description holds utility and underpins a range of applications. Yet significant excitement for nanopore science is more readily ignited by the role of nanopores as enabling tools for biomedical science. Nanopore techniques offer single-molecule sensing without the need for chemical labelling, since in most nanopore implementations, matter is its own label through its size, charge, and chemical functionality. Nanopores have achieved considerable prominence for single-molecule DNA sequencing. The predominance of this application, though, can overshadow their established use for nanoparticle characterization and burgeoning use for protein analysis, among other application areas. Analyte scope continues to be expanded, and with increasing analyte complexity, success will increasingly hinge on control over nanopore surface chemistry to tune the nanopore, itself, and to moderate analyte transport. Carbohydrates are emerging as the latest high-profile target of nanopore science. Their tremendous chemical and structural complexity means that they challenge conventional chemical analysis methods and thus present a compelling target for unique nanopore characterization capabilities. Furthermore, they offer molecular diversity for probing nanopore operation and sensing mechanisms. This article thus focuses on two roles of chemistry in nanopore science: its use to provide exquisite control over nanopore performance, and how analyte properties can place stringent demands on nanopore chemistry. Expanding the horizons of nanopore science requires increasing consideration of the role of chemistry and increasing sophistication in the realm of chemical control over this nanoscale milieu.
Publication Title, e.g., Journal
Analytical and Bioanalytical Chemistry
Volume
412
Issue
25
Citation/Publisher Attribution
Hagan, James T., Brian S. Sheetz, Y. M.Nuwan D. Bandara, Buddini I. Karawdeniya, Melissa A. Morris, Robert B. Chevalier, and Jason R. Dwyer. "Chemically tailoring nanopores for single-molecule sensing and glycomics." Analytical and Bioanalytical Chemistry 412, 25 (2020): 6639-6654. doi: 10.1007/s00216-020-02717-2.