HyperCEST detection of cucurbit[6]uril in whole blood using an ultrashort saturation Pre-pulse train

Document Type

Article

Date of Original Version

7-1-2016

Abstract

Xenon based biosensors have the potential to detect and localize biomarkers associated with a wide variety of diseases. The development and nuclear magnetic resonance (NMR) characterization of cage molecules which encapsulate hyperpolarized xenon is imperative for the development of these xenon biosensors. We acquired 129Xe NMR spectra, and magnetic resonance images and a HyperCEST saturation map of cucurbit[6]uril (CB6) in whole bovine blood. We observed a mean HyperCEST depletion of 84% (n = 5) at a concentration of 5 mM and 74% at 2.5 mM. Additionally, we collected these data using a pulsed HyperCEST saturation pre-pulse train with a SAR of 0.025 W/kg which will minimize any potential RF heating in animal or human tissue. Copyright © 2016 John Wiley & Sons, Ltd.

Publication Title, e.g., Journal

Contrast Media and Molecular Imaging

Volume

11

Issue

4

Share

COinS