Document Type

Article

Date of Original Version

1996

Department

Chemistry

Abstract

The thermodynamic and structural properties of (NH4Cl)n clusters, n =3 – 10 are studied. Using the method of simulated annealing, the geometries of several isomers for each cluster size are examined. Jump-walking Monte Carlo simulations are then used to compute the constant-volume heat capacity for each cluster size over a wide temperature range. To carry out these simulations a new parallel algorithm is developed using the parallel virtual machine (PVM) software package. Features of the cluster potential energy surfaces, such as energy differences among isomers and rotational barriers of the ammonium ions, are found to play important roles in determining the shape of the heat capacity curves.

Publisher Statement

© 1996 American Institute of Physics.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.