Document Type
Article
Date of Original Version
2015
Abstract
Binder free (BF) graphite electrodes were utilized to investigate the effect of electrolyte additives fluoroethylene carbonate (FEC) and vinylene carbonate (VC) on the structure of the solid electrolyte interface (SEI). The structure of the SEI has been investigated via ex-situ surface analysis including X-ray Photoelectron spectroscopy (XPS), Hard XPS (HAXPES), Infrared spectroscopy (IR) and transmission electron microscopy (TEM). The components of the SEI have been further investigated via nuclear magnetic resonance (NMR) spectroscopy of D2O extractions. The SEI generated on the BF-graphite anode with a standard electrolyte (1.2 M LiPF6 in ethylene carbonate (EC) / ethyl methyl carbonate (EMC), 3/7 (v/v)) is composed primarily of lithium alkyl carbonates (LAC) and LiF. Incorporation of VC (3% wt) results in the generation of a thinner SEI composed of Li2CO3, poly(VC), LAC, and LiF. Incorporation of VC inhibits the generation of LAC and LiF. Incorporation of FEC (3% wt) also results in the generation of a thinner SEI composed of Li2CO3, poly(FEC), LAC, and LiF. The concentration of poly(FEC) is lower than the concentration of poly(VC) and the generation of LAC is inhibited in the presence of FEC. The SEI appears to be a homogeneous film for all electrolytes investigated.
Citation/Publisher Attribution
Nie, M., Demeaux, J., Young, B. T., Heskett, D. R., Chen, Y., Bose, A., Woicik, J. C., & Lucht, B. L. (2015). Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries. J. Electrochem. Soc., 162(13), A7008-A7014. doi: 10.1149/2.0021513jes
Available at: http://dx.doi.org/10.1149/2.0021513jes
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Comment
Mengyun Nie and Julien Demeaux are in the Department of Chemistry.
Benjamin T. Young and David R. Heskett are in the Department of Physics.
Yanjing Chen and Arijit Bose are in the Department of Physics.