Document Type

Article

Date of Original Version

2007

Department

Chemistry

Abstract

Conjugated polymers entrapped in porous silicon microcavity have been studied as optical sensors for low volatility explosives such as trinitrotoluene. The fluorescence spectra of entrapped polymers were modulated by the microcavity via a spectral “hole” that matches the resonance peak of the microcavity reflectance. Exposure of the porous silicon microcavity containing entrapped polymer to explosives vapor results in a red shift of the resonance peak and the spectral hole, accompanied by the quenching of the fluorescence. This multiplexed response provides multiple monitoring parameters, enabling the development of an optical sensor array for the detection of target explosive vapor.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.