An Acceleration Method for Dogleg Methods in Simple Singular Regions

Document Type

Article

Date of Original Version

1-1-1998

Abstract

The behavior of dogleg methods in singular regions that have a one-dimensional null space is studied. A two-tier approach of identifying singular regions and accelerating convergence to a singular point is proposed. It is shown that singular regions are easily identified using a ratio of the two-norm of the Newton step to the two-norm of the Cauchy step since Newton steps tend to infinity and Cauchy steps tend to zero as a singular point is approached. Convergence acceleration is accomplished by bracketing the singular point using a projection of the gradient of the two-norm of the process model functions onto the normalized Newton direction in conjunction with bisection, thus preserving the global convergence properties of the dogleg method. Numerical examples for a continuous-stirred tank reactor and vapor-liquid equilibrium flash are used to illustrate the reliability and effectiveness of the proposed approach. Several geometric illustrations are presented.

Publication Title, e.g., Journal

Industrial and Engineering Chemistry Research

Volume

37

Issue

4

Share

COinS