Solvent-dependent permeability in asymmetric ceramic membranes with tortuous or non-tortuous mesopores
Document Type
Article
Date of Original Version
12-1-2008
Abstract
Solvent-dependent transport and the role of surface interactions were examined in commercial mesoporous ceramic membranes using permeability and thermoporometry measurements. The membranes chosen were titania (TiO2) with tortuous interconnected pores (1, 5, and 50 kDa, corresponding to pore diameters of ca. 8.2, 18.3, and 33.2 nm, respectively) and alumina (Al2O3) with non-tortuous 20 nm cylindrical pores. A pre-water/solvent/post-water permeability cycle was employed to account for structural differences between membranes and to gauge the effect of residual solvent on water permeability at different temperatures. Our results suggest that in both types of membranes, restricted permeability of 1-butanol and cyclohexane was due to a combination of surface sorption and an increase in disjoining pressure due to solvation forces. Sorption and solvation forces were prevalent as their length scales were on the same order of magnitude as the pore radii. For 1-butanol, chemisorption changed the surfaces from hydrophilic to hydrophobic, and led to a significant decrease in post-water permeability. While Darcy's law could not describe 1-butanol and cyclohexane permeability, it did apply to water and 1,4-dioxane in the 20 nm alumina membranes. Thermoporometry, coupled with permeability, was further used to evaluate surface wetting within the mesopores. © 2008 Elsevier B.V. All rights reserved.
Publication Title, e.g., Journal
Journal of Membrane Science
Volume
325
Issue
2
Citation/Publisher Attribution
Bothun, Geoffrey D., Qian Ni, and Shamsuddin Ilias. "Solvent-dependent permeability in asymmetric ceramic membranes with tortuous or non-tortuous mesopores." Journal of Membrane Science 325, 2 (2008): 982-988. doi: 10.1016/j.memsci.2008.09.026.