Hydrophobic Nanoparticles Modify the Thermal Release Behavior of Liposomes
Document Type
Article
Date of Original Version
5-18-2017
Abstract
Understanding the effect of embedded nanoparticles on the characteristics and behavior of lipid bilayers is critical to the development of lipid-nanoparticle assemblies (LNAs) for biomedical applications. In this work we investigate the effect of hydrophobic nanoparticle size and concentration on liposomal thermal release behavior. Decorated LNAs (D-LNAs) were formed by embedding 2 nm (GNP2) and 4 nm (GNP4) dodecanethiol-capped gold nanoparticles into DPPC liposomes at lipid to nanoparticle ratios (L:N) of 25,000:1, 10,000:1, and 5,000:1. D-LNA structure was investigated by cryogenic transmission electron microscopy, and lipid bilayer permeability and phase behavior were investigated based on the leakage of a model drug, carboxyfluorescein, and by differential scanning calorimetry, respectively. The presence of bilayer nanoparticles caused changes in the lipid bilayer release and phase behavior compared to pure lipid controls at very low nanoparticle to bilayer volume fractions (0.3%-4.6%). Arrhenius plots of the thermal leakage show that GNP2 led to greater increases in the leakage energy barrier compared to GNP4, consistent with GNP4 causing greater bilayer disruption due to their size relative to the bilayer thickness. Embedding hydrophobic nanoparticles as permeability modifiers is a unique approach to controlling liposomal leakage based on nanoparticle size and concentration.
Publication Title, e.g., Journal
Journal of Physical Chemistry B
Volume
121
Issue
19
Citation/Publisher Attribution
Preiss, Matthew R., Ashley Hart, Christopher Kitchens, and Geoffrey D. Bothun. "Hydrophobic Nanoparticles Modify the Thermal Release Behavior of Liposomes." Journal of Physical Chemistry B 121, 19 (2017): 5040-5047. doi: 10.1021/acs.jpcb.7b01702.