Title

Response of surfactant stabilized oil-in-water emulsions to the addition of particles in an aqueous suspension

Document Type

Article

Date of Original Version

11-4-2014

Abstract

As a model for understanding how surfactant-stabilized emulsions respond to the addition of interacting and noninteracting particles, we investigated the response of dodecane-in-water emulsions stabilized by SDS (anionic), CTAB (cationic), and Triton X-100 (nonionic) surfactants to the addition of an aqueous suspension of negatively charged fumed silica particles. The stability of the emulsion droplets and the concentration of surfactants/particles at the oil-water interfaces are sensitive to surfactant-particle interactions, mixing conditions, and the particle concentration in the bulk. Addition of the particle suspension to the SDS-stabilized emulsions showed no effect on emulsion stability. Coarsening of emulsion droplets is observed when fumed silica particles were added to emulsions stabilized by Triton X-100. Depending on the concentration of silica particles in the suspension, the addition of fumed silica particles to CTAB-stabilized emulsions resulted in droplet coalescence and phase separation of oil and water or formation of particle-coated droplets. Vigorous (vortex) mixing allows the particles to breach the oil-water interfaces and stabilize emulsions. While we have examined a specific particle suspension and a set of three surfactants, these observations can be generalized for other surfactant-particle mixtures.

Publication Title, e.g., Journal

Langmuir

Volume

30

Issue

43

Share

COinS