Design and analysis of aluminum/air battery system for electric vehicles
Document Type
Article
Date of Original Version
10-24-2002
Abstract
Aluminum (Al)/air batteries have the potential to be used to produce power to operate cars and other vehicles. These batteries might be important on a long-term interim basis as the world passes through the transition from gasoline cars to hydrogen fuel cell cars. The Al/air battery system can generate enough energy and power for driving ranges and acceleration similar to gasoline powered cars. From our design analysis, it can be seen that the cost of aluminum as an anode can be as low as US$ 1.1/kg as long as the reaction product is recycled. The total fuel efficiency during the cycle process in Al/air electric vehicles (EVs) can be 15% (present stage) or 20% (projected) comparable to that of internal combustion engine vehicles (ICEs) (13%). The design battery energy density is 1300 Wh/kg (present) or 2000 Wh/kg (projected). The cost of battery system chosen to evaluate is US$ 30/kW (present) or US$ 29/kW (projected). Al/air EVs life-cycle analysis was conducted and compared to lead/acid and nickel metal hydride (NiMH) EVs. Only the Al/air EVs can be projected to have a travel range comparable to ICEs. From this analysis, Al/air EVs are the most promising candidates compared to ICEs in terms of travel range, purchase price, fuel cost, and life-cycle cost. © 2002 Elsevier Science B.V. All rights reserved.
Publication Title, e.g., Journal
Journal of Power Sources
Volume
112
Issue
1
Citation/Publisher Attribution
Yang, Shaohua, and Harold Knickle. "Design and analysis of aluminum/air battery system for electric vehicles." Journal of Power Sources 112, 1 (2002): 162-173. doi: 10.1016/S0378-7753(02)00370-1.