Experimental investigations of liquid flow in rib-patterned microchannels with different surface wettability

Document Type

Article

Date of Original Version

7-1-2011

Abstract

The effects of rib-patterned surfaces and surface wettability on liquid flow in microchannels were experimentally investigated in this study. Microchannels were fabricated on single-crystal silicon wafers by photolithographic and wet-etching techniques. Rib structures were patterned in the silicon microchannel, and the surface was chemically treated by trichlorosilane to create hydrophobic condition. Experiments with water as the working fluid were performed with these microchannels over a wide range of Reynolds numbers between 110 and 1914. The results for the rib-patterned microchannels showed that the friction factor with the hydraulic diameter based on the ribto- upper-wall height was lower than that predicted from incompressible theory with the same height. The friction factor-Reynolds number products for the hydrophobic condition increased as Reynolds number increased in the laminar flow regime. The experimental results were also compared with the predictive expressions from the literature, and it was found that the experimental data for the small rib/cavity geometry was in good agreement with those in the literature. © Springer-Verlag 2011.

Publication Title, e.g., Journal

Microfluidics and Nanofluidics

Volume

11

Issue

1

Share

COinS