Document Type
Article
Date of Original Version
2018
Department
Biomedical and Pharmaceutical Sciences
Abstract
Accumulation of fibrillar amyloid β protein in blood vessels of the brain, a condition known as cerebral amyloid angiopathy (CAA), is a common pathology of elderly individuals, a prominent comorbidity of Alzheimer disease, and a driver of vascular cognitive impairment and dementia. Although several transgenic mouse strains have been generated that develop varying levels of CAA, consistent models of associated cerebral microhemorrhage and vasculopathy observed clinically have been lacking. Reliable preclinical animal models of CAA and microhemorrhage are needed to investigate the molecular pathogenesis of this condition. Herein, we describe the generation and characterization of a novel transgenic rat (rTg-DI) that produces low levels of human familial CAA Dutch/Iowa E22Q/D23N mutant amyloid β protein in brain and faithfully recapitulates many of the pathologic aspects of human small-vessel CAA. rTg-DI rats exhibit early-onset and progressive accumulation of cerebral microvascular fibrillar amyloid accompanied by early-onset and sustained behavioral deficits. Comparable to CAA in humans, the cerebral microvascular amyloid in rTg-DI rats causes capillary structural alterations, promotes prominent perivascular neuroinflammation, and produces consistent, robust microhemorrhages and small-vessel occlusions that are readily detected by magnetic resonance imaging. The rTg-DI rats provide a new model to investigate the pathogenesis of small-vessel CAA and microhemorrhages, to develop effective biomarkers for this condition and to test therapeutic interventions.
Citation/Publisher Attribution
Davis, J., Xu, F., Hatfield, J., Lee, H., Hood, M. D., Popescu, D.,...Van Nostrand, W. E. (2018). A Novel Transgenic Rat Model of Robust Cerebral Microvascular Amyloid with Prominent Vasculopathy. The American Journal of Pathology, 188(12), 2877-2889. doi: 10.1016/j.ajpath.2018.07.030
Available at: http://dx.doi.org/10.1016/j.ajpath.2018.07.030
Comment
Judianne Davis, Feng Xu, Joshua Hatfield, Regina Kim, John K. Robinson and William E. Van Nostrand are affiliated with the George & Anne Ryan Institute for Neuroscience. John K. Robinson is also from the Department of Psychology.
William E. Van Nostrand is also affiliated with the Department of Biomedical and Pharmaceutical Sciences.
Author Manuscript
This is a pre-publication author manuscript of the final, published article.
Terms of Use
This article is made available under the terms and conditions applicable
towards Open Access Policy Articles, as set forth in our Terms of Use.