Document Type
Article
Date of Original Version
2024
Department
Biomedical and Pharmaceutical Sciences
Abstract
Adverse health effects associated with exposures to perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a concern for public health and are driven by their elimination half-lives and accumulation in specific tissues. However, data on PFAS binding in human tissues are limited. Accumulation of PFAS in human tissues has been linked to interactions with specific proteins and lipids in target organs. Additional data on PFAS binding and unbound fractions (funbound) in whole human tissues are urgently needed. Here, we address this gap by using rapid equilibrium dialysis to measure the binding and funbound of 16 PFAS with 3 to 13 perfluorinated carbon atoms (ηpfc = 3–13) and several functional headgroups in human liver, lung, kidney, heart, and brain tissue. We compare results to mouse (C57BL/6 and CD-1) and rat tissues. Results show that funbound decreases with increasing fluorinated carbon chain length and hydrophobicity. Among human tissues, PFAS binding was generally greatest in brain > liver ≈ kidneys ≈ heart > lungs. A correlation analysis among human and rodent tissues identified rat liver as a suitable surrogate for predicting funbound for PFAS in human tissues (R2 ≥ 0.98). The funbound data resulting from this work and the rat liver prediction method offer input parameters and tools for toxicokinetic models for legacy and emerging PFAS.
Publication Title, e.g., Journal
Environmental Science & Technology
Volume
58
Issue
33
Citation/Publisher Attribution
Ryu S, Burchett W, Zhang S, Jia X, Modaresi SMS, Agudelo Areiza J, Rodrigues D, Zhu H, Sunderland EM, Fischer FC, Slitt AL. Unbound Fractions of PFAS in Human and Rodent Tissues: Rat Liver a Suitable Proxy for Evaluating Emerging PFAS? Environ Sci Technol. 2024 Aug 20;58(33):14641-14650. doi: 10.1021/acs.est.4c04050
Available at: https://doi.org/10.1021/acs.est.4c04050
Supporting Information
Author Manuscript
This is a pre-publication author manuscript of the final, published article.
Terms of Use
This article is made available under the terms and conditions applicable
towards Open Access Policy Articles, as set forth in our Terms of Use.