Document Type

Article

Date of Original Version

2024

Department

Biomedical and Pharmaceutical Sciences

Abstract

Adverse health effects associated with exposures to perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a concern for public health and are driven by their elimination half-lives and accumulation in specific tissues. However, data on PFAS binding in human tissues are limited. Accumulation of PFAS in human tissues has been linked to interactions with specific proteins and lipids in target organs. Additional data on PFAS binding and unbound fractions (funbound) in whole human tissues are urgently needed. Here, we address this gap by using rapid equilibrium dialysis to measure the binding and funbound of 16 PFAS with 3 to 13 perfluorinated carbon atoms (ηpfc = 3–13) and several functional headgroups in human liver, lung, kidney, heart, and brain tissue. We compare results to mouse (C57BL/6 and CD-1) and rat tissues. Results show that funbound decreases with increasing fluorinated carbon chain length and hydrophobicity. Among human tissues, PFAS binding was generally greatest in brain > liver ≈ kidneys ≈ heart > lungs. A correlation analysis among human and rodent tissues identified rat liver as a suitable surrogate for predicting funbound for PFAS in human tissues (R2 ≥ 0.98). The funbound data resulting from this work and the rat liver prediction method offer input parameters and tools for toxicokinetic models for legacy and emerging PFAS.

Publication Title, e.g., Journal

Environmental Science & Technology

Volume

58

Issue

33

Slitt_UnboundFractions_2024_SuppInfo.pdf (1738 kB)
Supporting Information

Share

COinS