Title

A Population Pharmacokinetic Analysis of PF-5190457, a Novel Ghrelin Receptor Inverse Agonist in Healthy Volunteers and in Heavy Alcohol Drinkers

Document Type

Article

Date of Original Version

4-1-2021

Abstract

Background and Objectives: The ghrelin receptor (GHS-R1a) is a potential target for alcohol use disorders. PF-5190457 is the first inverse agonist of GHS-R1a to progress to clinical development with potential to treat alcohol use disorder. We present a population pharmacokinetic model for PF-5190457 in non-heavy (alcohol consumption status = 0) and heavy alcohol drinkers (alcohol consumption status = 1), and identify relevant factors that can influence its pharmacokinetics. Methods: Plasma concentration–time data from non-heavy (n = 35) and heavy drinkers (n = 12) were pooled for the population pharmacokinetic model development. The influence of various covariates including alcohol consumption status was evaluated. The accuracy, precision, and robustness of the model were also evaluated using bootstrapping and visual predictive checks. Results: A two-compartment model best described the pharmacokinetics of PF-5190457. The apparent volume of distribution of 44.5 L, apparent clearance of 72.0 L/h, apparent peripheral volume of distribution of 271 L, apparent distributional clearance of 28.7 L/h, and first-order absorption rate constant of 0.27/h were accurate and precise. The apparent volume of distribution was 3.8-fold higher (169 L) in heavy drinkers, and correlated with a lower maximum plasma concentration in heavy drinkers compared with non-heavy drinkers at the same dose; and a corresponding reduced incidence of somnolence in heavy drinkers at doses > 50 mg. Conclusions: This work provides an accurate, precise, and robust two-compartment model that describes the pharmacokinetics of PF-5190457 and suggests a possible link of PF-5190457 pharmacokinetics with somnolence. Trial Registration: ClinicalTrials.gov identifier numbers NCT01247896 and NCT02039349

Publication Title, e.g., Journal

Clinical Pharmacokinetics

Volume

60

Issue

4

COinS