Inhibitory Effects and Surface Plasmon Resonance-Based Binding Affinities of Dietary Hydrolyzable Tannins and Their Gut Microbial Metabolites on SARS-CoV-2 Main Protease
Document Type
Article
Date of Original Version
10-20-2021
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) main protease (Mpro) inhibitors are considered as potential treatments for coronavirus disease 2019, and dietary polyphenols show promise in SARS-CoV-2 Mpro inhibition based on in silico studies. In the present study, we utilize a combination of biochemical-, surface plasmon resonance-, and docking-based assays to evaluate the inhibition and binding affinities of a series of tannins and their gut microbial metabolites on SARS-CoV-2 Mpro. The tested compounds (2-50 μM) were hydrolyzable tannins, including ellagitannins (punicalagin and ellagic acid) and gallotannins (tannic acid, pentagalloyl glucose, ginnalin A, and gallic acid), and their gut microbial metabolites, urolithins and pyrogallol, respectively. They inhibited SARS-CoV-2 Mpro (by 6.6-100.0% at 50 μM) and bound directly to the Mpro protein (with dissociation constants from 1.1 × 10-6 to 5.3 × 10-5 M). This study sheds light on the inhibitory effects of tannins and their metabolites on SARS-CoV-2 Mpro.
Publication Title, e.g., Journal
Journal of Agricultural and Food Chemistry
Volume
69
Issue
41
Citation/Publisher Attribution
Li, Hui-Fang, Feng Xu, Chang Liu, Ang Cai, Joel A. Dain, Dongli Li, Navindra P. Seeram, Bongsup P. Cho, and Hang Ma. "Inhibitory Effects and Surface Plasmon Resonance-Based Binding Affinities of Dietary Hydrolyzable Tannins and Their Gut Microbial Metabolites on SARS-CoV-2 Main Protease." Journal of Agricultural and Food Chemistry 69, 41 (2021): 12197-12208. doi: 10.1021/acs.jafc.1c03521.