Document Type

Article

Date of Original Version

2018

Department

Biomedical and Pharmaceutical Sciences

Abstract

Compared to conventional cancer treatment, combination therapy based on well-designed nanoscale platforms may offer an opportunity to eliminate tumors and reduce recurrence and metastasis. In this study, we prepared multifunctional microspheres loading 131I-labeled hollow copper sulfide nanoparticles and paclitaxel (131I-HCuSNPs-MS-PTX) for imaging and therapeutics of W256/B breast tumors in rats. 18F-fluordeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) imaging detected that the expansion of the tumor volume was delayed (P<0.05) following intra-tumoral (i.t.) injection with 131I-HCuSNPs-MS-PTX plus near-infrared (NIR) irradiation. The immunohistochemical analysis further confirmed the anti-tumor effect. The single photon emission computed tomography (SPECT)/photoacoustic imaging mediated by 131I-HCuSNPs-MS-PTX demonstrated that microspheres were mainly distributed in the tumors with a relatively low distribution in other organs. Our results revealed that 131I-HCuSNPs-MS-PTX offered combined photothermal, chemo- and radio-therapies, eliminating tumors at a relatively low dose, as well as allowing SPECT/CT and photoacoustic imaging monitoring of distribution of the injected agents non-invasively. The copper sulfide-loaded microspheres, 131I-HCuSNPs-MS-PTX, can serve as a versatile theranostic agent in an orthotopic breast cancer model.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS