Document Type

Article

Date of Original Version

5-22-2019

Department

Biomedical and Pharmaceutical Sciences

Abstract

5-Methylcytosine (5mC) in DNA CpG islands is an important epigenetic biomarker for mammalian gene regulation. It is oxidized to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) by the ten-eleven translocation (TET) family enzymes, which are α-ketoglutarate (α-KG)/Fe(II)-dependent dioxygenases. In this work, we demonstrate that the epigenetic marker 5mC is modified to 5hmC, 5fC, and 5caC in vitro by another class of α-KG/Fe(II)-dependent proteins—the DNA repair enzymes in the AlkB family, which include ALKBH2, ALKBH3 in huamn and AlkB in Escherichia coli. Theoretical calculations indicate that these enzymes may bind 5mC in the syn-conformation, placing the methyl group comparable to 3-methylcytosine, the prototypic substrate of AlkB. This is the first demonstration of the AlkB proteins to oxidize a methyl group attached to carbon, instead of nitrogen, on a DNA base. These observations suggest a broader role in epigenetics for these DNA repair proteins.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Share

COinS