Extraocular spectral photosensitivity in the tentacles of Hydra vulgaris

Document Type


Date of Original Version



Previous electrophysiological studies on the cnidarian Hydra vulgaris have shown that hydra have a highly developed and specific photoresponse despite their lack of any structure recognizable as a traditional photoreceptor. In an effort to identify the site of hydra's photoreceptors, we recorded extracellularly from single excised tentacles and from ablated hypostomes lacking tentacles in absolute darkness and during exposure to light of various wavelengths. During recording, after an initial period of absolute darkness, tentacles or hypostomes were exposed to light from 450. nm to 600. nm, red, and white light. Exposure to light caused a change in the pattern and frequency of impulses in the tentacles that varied with color. The number of large tentacle pulses (TPs) increased at 550 and 600. nm relative to darkness, whereas the number of small tentacle pulses (STPs) tended to decrease in 500. nm light. Impulse frequency was significantly different among the different wavelengths. In addition to bursts of tentacle contraction pulses, long trains of pulses were observed. A change in lighting caused a switch from bursting to trains or vice versa. In contrast to excised tentacles, no change in electrical activity was seen in ablated hypostomes at any of the wavelengths relative to each other or relative to darkness. These results indicate that isolated tentacles can distinguish among and respond to various colors across the visible spectrum and suggest that electromagnetic information is transmitted from the tentacles to the hypostome where it may be integrated by the hypostomal nervous system, ultimately contributing to hydra's photoreceptive behavior.

Publication Title, e.g., Journal

Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology