Document Type


Date of Original Version



Biological Sciences


Insect cuticle is considered an adaptable and versatile building material with roles in the construction and function of exoskeleton. Its physical properties are varied, as the biological requirements differ among diverse structures and change during the life cycle of the insect. Although the bulk of cuticle consists basically of cuticular proteins (CPs) associated with chitin, the degree of cuticular sclerotization is an important factor in determining its physical properties. Spodoptera litura, the tobacco cutworm, is an important agricultural pest in Asia. Compared to the domestic silkworm, Bombyx mori, another lepidopteran whose CP genes have been well annotated, S. litura has a shorter life cycle, hides in soil during daytime beginning in the 5th instar and is exposed to soil in the pupal stage without the protection of a cocoon. In order to understand how the CP genes may have been adapted to support the characteristic life style of S. litura, we searched its genome and found 287 putative cuticular proteins that can be classified into 9 CP families (CPR with three groups (RR-1, RR-2, RR-3), CPAP1, CPAP3, CPF, CPFL, CPT, CPG, CPCFC and CPLCA), and a collection of unclassified CPs named CPH. There were also 112 cuticular proteins enriched in Histidine residues with content varying from 6% to 30%, comprising many more His-rich cuticular proteins than B. mori. A phylogenetic analysis between S. litura, M. sexta and B. mori uncovered large expansions of RR-1 and RR-2 CPs, forming large gene clusters in different regions of S. liturachromosome 9. We used RNA-seq analysis to document the expression profiles of CPs in different developmental stages and tissues of S. litura. The comparative genomic analysis of CPs between S. litura and B. moriintegrated with the unique behavior and life cycle of the two species offers new insights into their contrasting ecological adaptations.