Document Type

Article

Date of Original Version

7-27-1998

Department

Biological Sciences

Abstract

Vampyroteuthis infernalis is a cosmopolitan cephalopod that lives in the oxygen minimum layer between 600 and 800 m depth. Morphometric and physiological studies have indicated that V. infernalis has little capacity for jet propulsion and has the lowest metabolic rate ever measured for a cephalopod. Because fin swimming is inherently more efficient than jet propulsion, some of the reduction in energy usage relative to other cephalopods may result from the use of fins as the primary means of propulsion. V. infernalis undergoes a rapid metamorphosis which consists of changes in the position, size and shape of the fins. This suggests that there are changes in the selective factors affecting locomotion through ontogeny. The present study describes these changes in relation to models for underwater ‘flight’. Citrate synthase (CS) and octopine dehydrogenase (ODH) activities, indicative of aerobic and anaerobic metabolism, respectively, were measured in fin, mantle and arm tissue across a range of body size of four orders of magnitude. The low enzymatic activities in both posterior and anterior fin tissue and the relatively high activity in mantle muscle prior to metamorphosis indicate that jet propulsion using mantle contraction is the primary means of propulsion in juvenile V. infernalis. The increase in CS activity with size after metamorphosis suggests an increased use of the fins for lift-based propulsion. Fin swimming appears to be the primary means of propulsion at all adult sizes. The negative allometry of CS activity in mantle and arm muscle is consistent with the scaling of oxygen consumption previously measured for V. infernalis and with the scaling of aerobic metabolism observed in most animals. The unusual positive allometry of fin muscle CS activity suggests that the use of fins is either relatively more important or more costly in larger animals. Positive scaling of ODH activity in all tissues suggests that fin propulsion, jet propulsion and medusoid ‘bell-swimming’ are all important for burst escape responses. Enzyme activities in Cirrothauma murrayi are consistent with finswimming observed from submersibles, while those in Opisthoteuthis californiana suggest a strong reliance on medusoid swimming using the arms. The transition from jet propulsion to paired-fin ‘flight’ with increasing body size in Vampyroteuthis infernalis appears functionally to be an ontogenetic ‘gait-transition’.

Share

COinS