Date of Award


Degree Type


Degree Name

Master of Science in Geology



First Advisor

Jon Boothroyd


Four facies have been previously interpreted and mapped (Boothroyd and Klinger 1998; Klinger 1996; Brenner 1998) on the Charlestown/Green Hill barrier upper shoreface using side-scan sonar surveys obtained in 1995, 1996, and 1997. These include: 1) a sand sheet (Ss) composed of fine to very fine sand, 2) coarse sand covered with small dune bedforms (Csd), 3) cobble pavement (GLc), and 4) glacial boulder outcrop (GLb). These upper shoreface surveys were reinterpreted where necessary and combined with lower shoreface (16-21 m water depth) surveys mapped in the present study. This resulted in the completion of a comprehensive facies map for the entire Charlestown/Green Hill shoreface surveyed in 1995, 1996, and 1997 (3- 21 m water depth). In addition to Csd, GLc, and GLb the present study identified three new facies on the lower shoreface surveyed in 1997. These include: 1) a fine sand facies (Fs) that is similar to Ss but does not occur as a sheet, 2) cobble pavement with a thin veneer of mud (GLcM), and 3) Coarse sand (Cs) with no small dunes.

The multi-year side-scan sonar data provided the spatial resolution needed to identify small but significant facies configuration changes of the sand sheet (Ss) and the coarse sand with small dunes (Csd) facies. It was found that these facies are highly affected by fairweather (southwest sea breeze) and storm events. To further investigate these configuration changes and sediment transport, the study hindcast waves and currents for storm events that could have caused the observed configuration changes to the shoreface. Wave and current conditions during historical storm events (1938-1999) were also hindcast in order to provide insight into the relative magnitude of sediment transport during extreme events along the south shore of Rhode Island.

During storm events, sediment is transported offshore by strong combined flows. These combined flows are concentrated and steered by topographic highs on the shoreface. Fine sand in the sand sheet (Ss) is transported onshore by asymmetrical wave orbital velocities during fairweather (short period southwest wind waves) and swell conditions (long period offshore storm waves). The study primarily focused on the transport of sediment offshore during storm-induced combined flow. It was found that there were 22 storms during the multi-year sonar record (1995-1997) that may have affected facies configuration. Twenty-one of these storms were capable of transporting fine sand at a depth of 6 m offshore and 19 were able to transport coarse sand at a depth of 1 Om offshore. Fine and coarse sand in both 6 m and 10 m of water were transported offshore during each of the 19 historical storm events identified in the study. During Hurricane Carol in 1954 and the Hurricane of September 1938 there was as much as 564.1 m3 ⋅ m-1 of fine sediment transported offshore. As expected these historical events were capable of transporting much more sediment offshore than the smaller events identified during the years of sonar record.

From 1995 to 1997 storminess on the Rhode Island coast increased, this resulted in a decrease in beach profile volume on the Charlestown barrier. Sand eroded from the active berm during this time period was transported offshore and alongshore. The sand eroded from the active berm was directly related to an observed increase in the extent of the 1996 fine sand sheet (Ss) configuration. As storminess continued into 1997, sediment volumes of both the active berm and the upper shoreface decreased. The present study demonstrated that significant amounts of sediment were capable of being transported to the lower shoreface, well beyond the area surveyed in the multi-year sonar record. Sediment transported to the lower shoreface is not transported shoreward during fairweather conditions and thus is lost from the upper shoreface/berm system. The fine sand (Fs) facies located in a depth of 11-18 m of water may represent a portion of this sediment transported offshore during storm-induced combined flows.


The following figures were too large for digitizing:

Plate 1 - Facies Map of the Charlestown/Green Hill Barrier Shoreface

Plate 2 - Facies Configuration Change 1995-1997



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.