Adsorption sites in coadsorption systems determined by photoemission spectroscopy: K and CO coadsorbed on Rh(111)

Document Type


Date of Original Version



The adsorption sites of coadsorbed K and CO on the Rh(111) surface have been determined using high-resolution core-level spectroscopy, low-energy electron diffraction and site-resolved photoelectron diffraction. For both a (2 × 2)-2CO-1K and a (2√3 × 2√3)-6CO-1K structure, we find that the CO molecules occupy threefold hollow sites and the K atoms on-top sites, contrary to the adsorption sites of K (threefold hollow site) and CO (on-top site below 0.5 monolayers) if adsorbed alone on Rh(111). Deposition of K onto a CO precovered surface is found to induce large shifts towards lower binding energy of the C and O 1s core levels (∼0.7 eV for C 1s and ∼1.5 eV for O 1s). The major part of these shifts is shown to arise from the K-induced site change of the CO molecules. This finding may be of importance in the interpretation of XPS data of related co-adsorption systems. Finally, it is suggested that the C and O 1s binding energies provide useful fingerprints of the CO adsorption site also for co-adsorption systems. © 1998 Elsevier Science B.V. All rights reserved.

Publication Title, e.g., Journal

Surface Science