Far-Field Tsunami Impact in the North Atlantic Basin from Large Scale Flank Collapses of the Cumbre Vieja Volcano, La Palma

Document Type


Date of Original Version



In their pioneering work, Ward and Day suggested that a large scale flank collapse of the Cumbre Vieja Volcano (CVV) on La Palma (Canary Islands) could trigger a mega-tsunami throughout the North Atlantic Ocean basin, causing major coastal impact in the far-field. While more recent studies indicate that near-field waves from such a collapse would be more moderate than originally predicted by Ward and Day [Løvholt et al. (J Geophy Res 113:C09026, 2008); Abadie et al. (J Geophy Res 117:C05030, 2012)], these would still be formidable and devastate the Canary Island, while causing major impact in the far-field at many locations along the western European, African, and the US east coasts. Abadie et al. (J Geophy Res 117:C05030, 2012) simulated tsunami generation and near-field tsunami impact from a few CVV subaerial slide scenarios, with volumes ranging from 20 to 450 km3; the latter representing the most extreme scenario proposed by Ward and Day. They modeled tsunami generation, i.e., the tsunami source, using THETIS, a 3D Navier-Stokes (NS) multi-fluid VOF model, in which slide material was considered as a nearly inviscid heavy fluid. Near-field tsunami impact was then simulated for each source using FUNWAVE-TVD, a dispersive and fully nonlinear long wave Boussinesq model [Shi et al. (Ocean Modell 43–44:36–51, 2012); Kirby et al. (Ocean Modeling, 62:39–55, 2013)]. Here, using FUNWAVE-TVD for a series of nested grids of increasingly fine resolution, we model and analyze far-field tsunami impact from two of Abadie et al.’s extreme CVV flank collapse scenarios: (i) that deemed the most “credible worst case scenario” based on a slope stability analysis, with a 80 km3 volume; and (ii) the most extreme scenario, similar to Ward and Day’s, with a 450 km3 volume. Simulations are performed using a one-way coupling scheme in between two given levels of nested grids. Based on the simulation results, the overall tsunami impact is first assessed in terms of maximum surface elevation computed along the western European and African, and US east coasts (USEC). Strong wave elevation decay is predicted over the wide USEC shelf, which is shown to be essentially due to bottom friction effects. We then show more detailed results for the USEC, which is the object of high-resolution tsunami inundation mapping under the auspices of the US National Tsunami Hazard Mitigation Program. In this context, we compare the maximum surface elevation predicted along the coastline for each CVV scenario and show that, besides the initial directionality of the sources, coastal impact is mostly controlled by focusing/defocusing effects resulting from the shelf bathymetric features. A simplified ray-tracing analysis confirms this controlling effect of the wide USEC shelf for incident long waves. Finally, we perform high-resolution (10 m) inundation mapping for the most extreme CVV scenario and show results at one of the most vulnerable and exposed communities in the mid-Atlantic US states, in and around Ocean City, Maryland. Such maps are being generated for all exposed areas of the USEC, to be used in tsunami hazard assessment and mitigation work.

Publication Title

Pure and Applied Geophysics