Title

Multimode damage tracking and failure prognosis in electromechanical system

Document Type

Conference Proceeding

Date of Original Version

1-1-2002

Abstract

In this paper a modification to a general-purpose machinery diagnostic/prognostic algorithm that can handle two or more simultaneously occurring failure processes is described. The method is based on a theory that views damage as occurring in a hierarchical dynamical system where slowly evolving, hidden failure processes are causing nonstationarity in a fast, directly observable system. The damage variable tracking is based on statistics calculated using data-based local linear models constructed in the reconstructed phase space of the fast system. These statistics are designed to measure a local change in the fast systems flow caused by the slow-time failure processes. The method is applied to a mathematical model of an experimental electromechanical system consisting of a beam vibrating in a potential field crated by two electromagnets. Two failure modes are introduced through discharging batteries supplying power to these electromagnets. Open circuit terminal voltage of these batteries is a two-dimensional damage variable. Using computer simulations, it is demonstrated both analytically and experimentally that the proposed method can accurately track both damage variables using only a displacement measurements from the vibrating beam. The accurate estimates of remaining time to failure for each battery are given well ahead of actual breakdowns.

Publication Title

Proceedings of SPIE - The International Society for Optical Engineering

Volume

4733

Share

COinS