Document Type


Date of Original Version



Numerical simulation of sea surface directional wave spectra under hurricane wind forcing was carried out using a high-resolution wave model. The simulation was run for four days as Hurricane Bonnie (1998) approached the U.S. East Coast. The results are compared with buoy observations and NASA Scanning Radar Altimeter (SRA) data, which were obtained on 24 August 1998 in the open ocean and on 26 August when the storm was approaching the shore. The simulated significant wave height in the open ocean reached 14 m, agreeing well with the SRA and buoy observations. It gradually decreased as the hurricane approached the shore. In the open ocean, the dominant wavelength and wave direction in all four quadrants relative to the storm center were simulated very accurately. For the landfall case, however, the simulated dominant wavelength displays noticeable overestimation because the wave model cannot properly simulate shoaling processes. Direct comparison of the model and SRA directional spectra in all four quadrants of the hurricane shows excellent agreement in general. In some cases, the model produces smoother spectra with narrower directional spreading than do the observations. The spatial characteristics of the spectra depend on the relative position from the hurricane center, the hurricane translation speed, and bathymetry. Attempts are made to provide simple explanations for the misalignment between local wind and wave directions and for the effect of hurricane translation speed on wave spectra.