Metamorphosis in the summer flounder, Paralichthys dentatus: Thyroidal status influences salinity tolerance

Document Type


Date of Original Version



Metamorphosis in the summer flounder (Paralichthys dentatus) is controlled by thyroid hormones (TH) and takes place as the larvae move from a salinity of about 35 parts per thousand (ppt) in the ocean to salinity ranging from 0-35 ppt in estuaries. Historically, the role of TH in juvenile and adult teleost osmoregulation has been ambiguous, and it is not known if TH influences larval teleost osmoregulatory development. This study addresses the influence of thyroxine (T4) on the development of tolerance to low (5 ppt) and high salinity (45 and 50 ppt) as determined by salinity tolerance tests. In untreated larvae, tolerance to both low and high salinity was high during early premetamorphosis (early pre-M) and decreased or was very low from late prometamorphosis (late pro-M) through mid-metamorphic climax (mid-MC). Salinity tolerance increased 2-3-fold during late MC when whole-animal T4 levels are highest, and reached maximum tolerance at the juvenile stage. The early induction of metamorphosis by exposing larvae in pre-M to exogenous T4 reduced tolerance to low salinity during early and mid-MC, though tolerance of fish that had developed into juveniles was not impaired. In contrast, T4 increased high salinity tolerance during early and mid-MC, and the juvenile stage. This T4-induced heterochrony in salinity tolerance with regards to developmental stage suggests that the effects of T4 on salinity tolerance may be uncoupled from accelerated metamorphosis. Treatment of larvae with thiourea (TU, an inhibitor of T4 synthesis) inhibited metamorphosis and reduced tolerance to high salinity, but did not affect tolerance to low salinity. Reduced tolerance to high salinity by TU was only partially counteracted by T4 treatment, suggesting that TU also affects hypoosmoregulatory activity by an extrathyroidal mechanism. Our findings suggest that in the summer flounder T4 plays a more important role in the development of hypoosmoregulatory ability than hyperosmoregulatory ability.

Publication Title, e.g., Journal

Journal of Experimental Zoology