Predicted impacts of elevated temperature on the magnitude of the winter-spring phytoplankton bloom in temperate coastal waters: A mesocosm study

Document Type


Date of Original Version



An experiment was conducted with six 13-m3 land-based mesocosms (5 m deep) in December 1996/February 1997 to address the impact of increased temperature on the trophic structure of nutrient-rich coastal systems. All mesocosms were exposed to a high nutrient loading rate (2.31 mmol N m-3 d-1 :0.18 mmol P m-3 d-1 :0.165 mmol Si m-3 d-1). Three treatment mesocosms were maintained at a temperature elevated ~1°C relative to the long-term (1977-1989) average, ambient temperature in the parent system, Narragansett Bay, Rhode Island, and elevated ~3°C from three control mesocosms. Warmer temperatures were hypothesized to result in lower phytoplankton biomass during the winter-spring bloom period as a result of increased grazing related to greater metabolic activity of both zooplankton and the benthos. Mean phytoplankton biomass and abundance were lower in the mesocosms with warmer temperatures. Well-developed phytoplankton blooms occurred in two of the three cool systems. The presence of high numbers of filter-feeding mussels (Mytilus edulis) prevented a bloom from occurring in the third cool system. Unlike most benthic organisms, mussels continue to filter at high rates even at very low temperatures. Analyses of variance (ANOVAs), after adjusting for mussel biomass, revealed significant (P < 0.05) or near significant (P < 0.10) differences in phytoplankton (abundance and biomass), zooplankton abundance, and sedimentation rates between warm and cool treatments. Experimental and literature data were combined to develop carbon budgets for the six systems. Budgets for the warm systems indicated that carbon produced by phytoplankton was lost primarily by grazing of zooplankton, mussels, or both (29-55%) and to a lesser degree, by sedimentation (29-43%). In the cool systems without mussels, losses via sedimentation (73-82%) predominated, with an average ninefold increase in the amount of material supplied to the benthos relative to warm systems.

Publication Title, e.g., Journal

Limnology and Oceanography