On the characteristics of linear-phase roll vortices under a moving hurricane boundary layer

Document Type


Date of Original Version



Previous theoretical and numerical studies only focused on the formation of roll vortices (rolls) under a stationary and axisymmetric hurricane. The effect of the asymmetric wind structure induced by the storm movement on the roll characteristics remains unknown. In this study, we present the first attempt to investigate the characteristics of linear-phase rolls under a moving hurricane by embedding a linear two-dimensional (2D) roll-resolving model into a 3D hurricane boundary layer model. It is found that the roll horizontal wavelength under the moving hurricane is largely determined by the radial-shear-layer depth, defined as the thickness of the layer with positive radial wind shear. The horizontal distribution of the roll wavelength resembles the asymmetric pattern of the radial-shear-layer depth. Interestingly, the roll growth rate is not only affected by the radial wind shear magnitude alluded to in previous studies but also by the radial-shear-layer depth. A deeper (shallower) radial shear layer tends to decrease (increase) the roll growth rate. Such an effect is due to the presence of the bottom boundary. The bottom boundary constrains the lower-level roll streamlines and reduces the efficiency of rolls in extracting kinetic energy from the radial shear. This effect is more pronounced under a deeper shear layer, which favors the formation of larger-size rolls. This study improves the understanding of the main factors affecting the structure and growth of rolls and will provide guidance for interpreting the spatial distribution of rolls under realistic hurricanes in observations and high-resolution simulations.

Publication Title, e.g., Journal

Journal of the Atmospheric Sciences