Document Type

Conference Proceeding

Date of Original Version



Electrical, Computer and Biomedical Engineering


In celestial navigation the altitude (elevation) angles to multiple celestial bodies are measured; these measurements are then used to compute the position of the user on the surface of the Earth. Methods described in the literature include the classical “altitude-intercept” algorithm as well as direct and iterative least-squares solutions for over determined situations. While it seems rather obvious that the user should select bright stars scattered across the sky, there appears to be no established results on the level of performance that is achievable based upon the number of stars sighted nor how the “best” set of stars might be selected from those visible. This paper addresses both of these issues by examining the performance of celestial navigation noting its similarity to the performance of GNSS systems; specifically, modern results on GDOP for GNSS are adapted to this classical celestial navigation problem.