Title

Designing and testing a wearable, wireless fNIRS patch

Document Type

Conference Proceeding

Date of Original Version

10-13-2016

Abstract

Optical brain monitoring using near infrared (NIR) light has got a lot of attention in order to study the complexity of the brain due to several advantages as oppose to other methods such as EEG, fMRI and PET. There are a few commercially available functional NIR spectroscopy (fNIRS) brain monitoring systems, but they are still non-wearable and pose difficulties in scanning the brain while the participants are in motion. In this work, we present our endeavors to design and test a low-cost, wireless fNIRS patch using NIR light sources at wavelengths of 770 and 830nm, photodetectors and a microcontroller to trigger the light sources, read photodetector's output and transfer data wirelessly (via Bluetooth) to a smart-phone. The patch is essentially a 3-D printed wearable system, recording and displaying the brain hemodynamic responses on smartphone, also eliminates the need for complicated wiring of the electrodes. We have performed rigorous lab experiments on the presented system for its functionality. In a proof of concept experiment, the patch detected the NIR absorption on the arm. Another experiment revealed that the patch's battery could last up to several hours with continuous fNIRS recording with and without wireless data transfer.

Publication Title, e.g., Journal

Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS

Volume

2016-October

COinS