Real-time tracking on adaptive critic design with uniformly ultimately bounded condition

Document Type

Conference Proceeding

Date of Original Version



In this paper, we proposed a new nonlinear tracking controller based on heuristic dynamic programming (HDP) with the tracking filter. Specifically, we integrate a goal network into the regular HDP design and provide the critic network with detailed internal reward signal to help the value function approximation. The architecture is explicitly explained with the tracking filter, goal network, critic network and action network, respectively. We provide the stability analysis of our proposed controller with Lyapunov approach. It is shown that the filtered tracking errors and the weights estimation errors in neural networks are all uniformly ultimately bounded (UUB) under certain conditions. Finally, we compare our proposed approach with regular HDP approach in virtual reality (VR)/Simulink environment to justify the improved control performance. © 2013 IEEE.

Publication Title

IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL